Stack Llama and Vicuna-13B Comparison

Stack Llama, available on the TRL Library, is a RLHF model that works well with logical tasks, similar to the performance of normal Vicuna-13B 1.1 in initial testing. However, it requires about 25.2GB of dedicated GPU VRAM and takes approximately 12 seconds to load.

The Stack Llama model was trained using the StableLM training method, which aims to improve the stability of the model's training and make it more robust to the effects of noisy data. The model was also trained on a diverse set of tasks, including summarization, question answering, and text generation, making it more versatile than previous models.

In comparison to other models, TheBloke_stable-vicuna-13B-HF and eachadea_vicuna-13b-1.1 are two models with low perplexity that have been tested and shown in comparison charts. The former has a stable version and is available on Hugging Face. The latter has been tested against other models and the results are available here.

Open source in this context means that the code is available for review, use, and modification by anyone, without requiring payment or license fees. However, the Llama models are not completely free as they require a large amount of computing resources to run.

Delta weights are weights that have been trained on additional data and can be combined with original Llama weights. It is unclear from the comments if HF version is necessary for the combination. The commercial usefulness of Llama models is debated.

There is enthusiasm for the StableLM releases and hope for future initiatives.

For more information on Stack Llama, refer to the Hugging Face blog post.

Similar Posts

LLAMA-style LLMs and LangChain: A Solution to Long-Term Memory Problem

LLAMA-style Long-Form Memory (LLM) models are gaining popularity in solving long-term memory (LTM) problems. However, the creation of LLMs requires a fully manual process. Users may wonder whether any existing GPT-powered applications perform similar tasks. A project called gpt-llama.cpp, which uses llama.cpp and mocks an OpenAI endpoint, has been proposed to support GPT-powered applications with llama.cpp, which supports Vicuna.

LangChain, a framework for building agents, provides a solution to the LTM problem by combining LLMs, tools, and memory. … click here to read

Comparing Large Language Models: WizardLM 7B, Alpaca 65B, and More

A recent comparison of large language models, including WizardLM 7B , Alpaca 65B , Vicuna 13B, and others, showcases their performance across various tasks. The analysis highlights how the models perform despite their differences in parameter count. The GPT4-X-Alpaca 30B model, for instance, gets close to the performance of Alpaca 65B. Furthermore, the Vicuna 13B and 7B models demonstrate impressive results, given their lower parameter numbers.

Some users … click here to read

UltraLM-13B on the Leaderboard

UltraLM-13B has now been tested on this open leaderboard. Click here to view the leaderboard. It's the 25th best 13B model on the leaderboard. If this is an accurate assessment, could its high AlpacaEval performance be a problem with UltraLM's dataset or an example of how bad AlpacaEval is and the concept of using LLMs to judge other LLMs? Edit: Quite bad on this leaderboard too. Here is the leaderboard.

Just have a look … click here to read

Exploring the Best GPUs for AI Model Training

Are you looking to enhance your AI model performance? Having a powerful GPU can make a significant difference. Let's explore some options!

If you're on a budget, there are alternatives available. You can run llama-based models purely on your CPU or split the workload between your CPU and GPU. Consider downloading KoboldCPP and assign as many layers as your GPU can handle, while letting the CPU and system RAM handle the rest. Additionally, you can … click here to read

Magi LLM and Exllama: A Powerful Combination

Magi LLM is a versatile language model that has gained popularity among developers and researchers. It supports Exllama as a backend, offering enhanced capabilities for text generation and synthesis.

Exllama, available at , is a powerful tool that comes with a basic WebUI. This integration allows users to leverage both Exllama and the latest version of Llamacpp for blazing-fast text synthesis.

One of the key advantages of using Exllama is its speed. Users … click here to read

Improving Llama.cpp Model Output for Agent Environment with WizardLM and Mixed-Quantization Models

Llama.cpp is a powerful tool for generating natural language responses in an agent environment. One way to speed up the generation process is to save the prompt ingestion stage to cache using the --session parameter and giving each prompt its own session name. Furthermore, using the impressive and fast WizardLM 7b (q5_1) and comparing its results with other new fine tunes like TheBloke/wizard-vicuna-13B-GGML could also be useful, especially when prompt-tuning. Additionally, adding the llama.cpp parameter --mirostat has been … click here to read

Biased or Censored Completions - Early ChatGPT vs Current Behavior

I've been exploring various AI models recently, especially with the anticipation of building a new PC. While waiting, I've compiled a list of models I plan to download and try:

  • WizardLM
  • Vicuna
  • WizardVicuna
  • Manticore
  • Falcon
  • Samantha
  • Pygmalion
  • GPT4-x-Alpaca

However, given the large file sizes, I need to be selective about the models I download, as LLama 65b is already consuming … click here to read

© 2023 All rights reserved.